Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition

نویسندگان

  • Shujie Tang
  • Haomin Wang
  • Yu Zhang
  • Ang Li
  • Hong Xie
  • Xiaoyu Liu
  • Lianqing Liu
  • Tianxin Li
  • Fuqiang Huang
  • Xiaoming Xie
  • Mianheng Jiang
چکیده

To grow precisely aligned graphene on h-BN without metal catalyst is extremely important, which allows for intriguing physical properties and devices of graphene/h-BN hetero-structure to be studied in a controllable manner. In this report, such hetero-structures were fabricated and investigated by atomic resolution scanning probe microscopy. Moiré patterns are observed and the sensitivity of moiré interferometry proves that the graphene grains can align precisely with the underlying h-BN lattice within an error of less than 0.05°. The occurrence of moiré pattern clearly indicates that the graphene locks into h-BN via van der Waals epitaxy with its interfacial stress greatly released. It is worthy to note that the edges of the graphene grains are primarily oriented along the armchair direction. The field effect mobility in such graphene flakes exceeds 20,000 cm(2)·V(-1)·s(-1) at ambient condition. This work opens the door of atomic engineering of graphene on h-BN, and sheds light on fundamental research as well as electronic applications based on graphene/h-BN hetero-structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunneling characteristics in chemical vapor deposited graphene – hexagonal boron nitride – graphene junctions

Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...

متن کامل

Tunneling characteristics in chemical vapor deposited grapheneâ•fihexagonal boron nitrideâ•figraphene junctions

Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...

متن کامل

Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single cryst...

متن کامل

Transferable single-crystal GaN thin films grown on chemical vapor-deposited hexagonal BN sheets

Single-crystal gallium nitride (GaN) layers were directly grown on centimeter-scale hexagonal boron nitride (h-BN). Using chemical vapor deposition (CVD), centimeter-scale h-BN films were synthesized on a single-crystal Ni(111) and readily transferred onto amorphous fused silica supporting substrates that had no epitaxial relationship with GaN. For growing fully coalescent GaN layers on h-BN, t...

متن کامل

Direct growth of graphene pad on exfoliated hexagonal boron nitride surface.

A direct and metal layer-free growth of flat graphene pads on exfoliated hexagonal boron nitride substrate (h-BN) are demonstrated by atmospheric chemical vapour deposition (CVD) process. Round shape with high flatness graphene pads are grown in high yield (∼95%) with a pad thickness of ∼0.5 nm and homogenous diameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013